On a Discrete-Time Risk Model with Random Income and a Constant Dividend Barrier
نویسندگان
چکیده
منابع مشابه
Optimal Dividend-payout in Random Discrete Time
Assume that the surplus process of an insurance company is described by a general Lévy process and that possible dividend pay-outs to shareholders are restricted to random discrete times which are determined by an independent renewal process. Under this setting we show that the optimal dividend pay-out policy is a band-policy. If the renewal process is a Poisson process, it is further shown tha...
متن کاملThe study of the discrete risk model with random income
In this paper, we extend the compound binomial model to the case where the premium income process, based on a binomial process, is no longer a linear function. First, a mathematically recursive formula is derived for non ruin probability, and then, we examine the expected discounted penalty function, satisfy a defect renewal equation. Third, the asymptotic estimate for the expected discounted p...
متن کاملThe Markovian Regime-Switching Risk Model with Constant Dividend Barrier under Absolute Ruin
In this paper, we consider the dividend payments prior to absolute ruin in a Markovian regime-switching risk process in which the rate for the Poisson claim arrivals and the distribution of the claim amounts are driven by an underlying Markov jump process. A system of integro-differential equations with boundary conditions satisfied by the moment-generating function, the n th moment of the disc...
متن کاملNumerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process
In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...
متن کاملLévy risk model with two-sided jumps and a barrier dividend strategy
In this paper,we consider a general Lévy riskmodelwith two-sided jumps and a constant dividend barrier. We connect the ruin problem of the ex-dividend risk process with the first passage problem of the Lévy process reflected at its running maximum. We prove that if the positive jumps of the risk model form a compound Poisson process and the remaining part is a spectrally negative Lévy process w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2021
ISSN: 2314-4785,2314-4629
DOI: 10.1155/2021/5575187